2008年8月27日星期三

删除MSN SPACE上的垃圾评论

MSN SPACE上偶尔有些的垃圾评论,少的话我也不管了,但最近夸张了一点,一下就来了3、4个,一定要想办法。
如果浏览和评论的权限区分开来就会好一点,有些知识分享的内容要可以浏览,但评论就不必了。好像MSN SPACE还没有这个功能。
要找个简单点的方法手动删除。

参考 http://www.msnfly.cn/thread-2819-1-1.html

法1:
通过进入你Live Spaces的Mobile页面:http://空间ID.mobile.spaces.live.com/
可以看到最近的评论,然后一条条删除,但好像对旧的评论就没什么办法。

法2:
通过日志摘要,在主页点日志,在进入日志后点摘要。
也可以通过下面的方法进入:http://空间ID.spaces.live.com/?_c11_BlogPart_BlogPart=summary&_c=BlogPart
看到有评论的地方,点击评论将评论展开,就可以在每条评论上打勾,最后点删除选中的项目。

卤素灯就是卤钨灯

http://zhidao.baidu.com/question/2084040.html?fr=qrl&fr2=query

卤素灯
充有溴碘等卤族元素或卤化物的钨灯称为卤素灯或卤钨灯。它是新一代白炽灯。
为提高白炽灯的发光效率,必须提高钨丝的温度,但相应会造成钨的蒸发,使玻壳发黑。在白炽灯中充入卤族元素或卤化物,利用卤钨循环的原理可以消除白炽灯的 玻壳发黑现象。这就是卤素灯的来由。但为确保卤钨循环的正常进行,必须大大缩小玻壳尺寸,以提高玻壳温度(一般要求碘钨灯的玻壳温度为250-600℃, 溴钨灯的玻壳温度为200-1100℃),使灯内卤化钨处于气态。因此,卤素灯的玻壳必须使用耐高温和机械强度高的石英玻璃。其结构有双端直管形、单端圆 柱形和反射形。由于使用石英玻璃作玻壳,卤素灯又常称石英灯。其中反射形卤素灯因带有反射杯,又常称杯灯。卤钨灯功率有5W、10W、15W、20W、 25W、30W、35W、40W、45W、50W、60W、70W、100W、150W、200W和250W等多种。工作电压有6V、12V、24V、 28V、110V和220V等多种。灯头有螺口式(E10、E11、E14等)、插入式(GU5.3、GX5.3、GY6.35、GZ4和G8等)和直接 引出式。其中杯灯还有带前罩与不带前罩之分。杯口直径有25mm(MR8),35mm(MR11)和50 mm(MR16)等几种。反射角有8°、10°、12°、20°、24°、30°、36°、40°和60°等多种。
由于卤素灯中钨的蒸发受到有效的抑制,加之卤钨循环消除了玻壳发黑,卤素灯灯丝的温度就可大大提高(高达3000℃),使卤素灯的发光效率远比普通白炽灯 高。例如,白炽灯需要消耗75W电能才能达到960流明的光通量,而卤素灯仅需50W。卤素灯尤其吸引人的地方是它的体积小巧玲珑,品种规格多种多样,尤 其杯灯可把光线集中反射,相对于散射型光源而言,消耗同样电功率,可获得强得多的照度,因此,人们觉得卤素灯"特别明亮",能使物体的表面色泽更绚丽,光 彩更夺目,甚至觉得有迷人的闪烁效果。杯灯的反射角度有从窄到宽多种角度可供选择(越窄越觉明亮),也给专业灯光设计提供很大的创意空间。
卤素灯具有体积小、发光效率高(达17-33 lm/W)、色温稳定(可选取2500K-3500K)、光衰小(5%以下)、寿命长(可达3000小时至5000小时)等特点,这些特点显示出它有取代 普通白炽灯的趋势。但石英玻璃昂贵,卤素灯的价格当然要比白炽灯高。
同白炽灯一样,卤钨灯按用途、结构和外形也可分成许多类别

最长命的灯泡

http://www.cctv.com/program/qqzxb/20080510/102287.shtml

这只长寿灯泡隶属于美国加州利佛摩尔市消防队,是功率仅为4瓦的碳丝灯泡,用来为那些24小时待命出勤的队员提供照明。日前,吉尼斯世界纪录确认,这只 107岁高龄的"寿星灯泡"是"全球最老的电灯泡"。至于这只寿星灯泡的"长寿秘诀",许多人猜测说,由于它从不开关,所以灯丝寿命超长。现在,这只"寿 星灯泡"还拥有自己的官方网站,全球的"粉丝"们都可通过网络"瞻仰"这只传奇灯泡。

http://everything2.com/e2node/The%2520long-lasting%2520light%2520bulb%2520of%2520Livermore%252C%2520California

In a fire station in Livermore, California, a light bulb has burned since 1901-- almost continuously. Only on a couple of occasions has it been turned off, during moves. When they placed it in a socket at the new location, it lit up. Power failures have also temporarily dimmed the bulb.
No, really.
The bulb bears no marks, but historians believe that the Shelby Electric Company manufactured the 4-watt item. Dennis Bernal, owner of Livermore Power and Light, donated it to the city's joint fire/police station in 1901. It has served as a garage night light, first at at the fire department hose cart house in 1901, then at the new fire station in the 1930s, and again at a station opened in 1976.
In 1972, the Ripley's Believe it or Not! Museum researched the bulb and declared it authentic-- though they have a certain history for credulity. The program On the Road with Charles Kurault profiled the enigmatic bulb around the same time. The Guinness Book of World Records has also listed the bulb, though they state only that evidence supports the town's claim. Numerous newspapers, magazines, radio and tv shows have investigated the bulb. The skeptical Mikkelsons of the Snopes Urban Legend Site vouch for the bulb's authenticity.
The Livermore light likely served as the inspiration for Byron the Immortal Light Bulb from Thomas Pynchon's Gravity's Rainbow.
Livermore celebrates its bulb, and threw a centennial for it in 2001. They also established a bulb webcam, at the official website (See http://www.centennialbulb.org/photos.htm). The bulb's incandescence can be viewed from around the world.
Livermore's bulb is not unique. A New York City hardware store had a 1912 light which continued to burn until at least the 1970s. A bulb at the Palace Theater in Fort Worth, Texas lasted 68 years. Another in the washroom of an Ipswich Electrical Shop appears to have lasted from 1930 to 2001, when it finally went the way of all flash.
Some people wonder why modern lights could not burn so long. Others expound theories conspiratorial and claim that such lights could easily be manufactured, but that the vast, all-powerful bulb-manufacturing interests prevent it from happening, lest they lose our repeat business. Steven Johnson of Lawrence Berkeley National Laboratory, among others, says that, in fact, light manufacturers merely respond to consumer demand. They "can make it very dim to last for a very long period of time, or they can make it bright... and last for 750 or a thousand hours" (quoted in Knapp). The Livermore bulb has burned for more than one hundred years, but it has not burned brightly; it could really only be used as a night light.
Provided the fire-fighters of Livermore's Station #6 are not otherwise occupied, the public may visit the bulb Monday through Friday from 8 am to 5 pm.

主页:
http://www.centennialbulb.org/

实时图片:
http://www.centennialbulb.org/cam.htm
说是10更新一次,但到现在还是08年8月21日17点29分39秒的。

难道灯坏了?还是摄像机坏了?

2008年8月24日星期日

鼠标、键盘到底有没有辐射

说法1:
http://zhidao.baidu.com/question/30171633.html

你知道计算机的辐射量是多少吗?
1、键盘1000V/m
2、鼠标450V/m
3、屏幕218V/m
4、主机170V/m
电脑的键盘、鼠标为何会有电磁辐射呢?因为它们是通过主机的交流电能产生交变信号实现所有功能的,所以能产生低频辐射。 (应该是整流后的直流,不存在低频辐射)
简便的说:因为键盘、鼠标都是和电脑的主机相连接的。如果是无线键盘、鼠标。那电磁辐射就几乎没有,非常小。
而距离两英尺以最高发射功率计算,一个802.11b无线鼠标、键盘等设备所产生的辐射仅为每平方厘米2微瓦(1微瓦为百万分之一瓦特)。而性能更高的 802.11g产品所释放的辐射就更小了。美国联邦通信委员会FCC规定,只要无线网络设备的辐射限定在每平方厘米1000微瓦之内都是安全的。因此,哪 怕有几十个无线设备同时在一个房间内使用,也不会对人体产生危害。专家表示:"电磁波产生最多的地方是插电的电线,而键盘的布线符合向周围泄漏电磁辐射的问题。"华北计算技术研究所的崔屹则认为:"键盘因为泄漏的电磁辐射,更成为除显示器外信息最容易被截获并被复现的设备。"


说法2:
http://zhidao.baidu.com/question/30171633.html

在Google上键入"键盘辐射",0.2秒后跳出85100条检索结果。粗粗 浏览,"键盘辐射,敲响健康警钟!"、"电脑辐射伤害最大在键盘"、"站在辐射的问题上选键盘"等帖子比比皆是。点击进入阅读正文,有关"键盘辐射最大" 的描述更是"证据确凿":键盘1000伏特/米(电磁辐射的通用计量单位)、鼠标450伏特/米、屏幕218伏特/米、主机170伏特/米。莫非键盘真的 就是被人忽视的电脑辐射污染源?
市计量测试技术研究院电磁兼容重点实验室业务主管林志煌说,即便都是键盘,不同 厂商的产品所产生的电磁辐射也不同。将键盘、鼠标、屏幕、主机四种不同电脑部件放在一起做比较,本身就不是科学态度。更何况,从理论上讲,耗电量越大的电 子产品产生电磁辐射的几率越高。在键盘、鼠标、屏幕、主机四者之中,显然是主机和屏幕更耗电。
那么,网上盛传的检测数据又是如何得来的呢?林志煌推测,这可能是某些对电磁辐射问题感兴趣的大学生私下检测的结果。他告诉记者,在一些电子商 场,大学生很容易买到测试电磁辐射的简易量表,它的前端是块海绵体,内置一个小型感应器。一旦测量者无法对键盘、鼠标、屏幕、主机的测量距离做到 "一视同仁",得出的结果将与实际情况相去甚远。"要知道,就电磁辐射来说,1000伏特/米是一个非常惊人的数量级,怎会出自小小一块键盘?"林志煌的 解释彻底为键盘"洗"清了"罪名"。
尽管有关电磁波是否会伤害人体脑电波的争论,国际上尚无定论,但林志煌提醒消费者,购买电子产品一定要认准"3C"标志。这一标志表示,该产品所 产生的电磁辐射符合国家标准。对于电脑前放上一盆仙人掌就能减少辐射的"民间妙方",林志煌则不敢苟同:"除非你在面前放一块铁板将电磁波反射回去,否则 只能是自欺欺人。"

说法3:
http://www.theregister.co.uk/2000/07/13/can_your_keyboard_kill_you/

Repetitive Strain Injury (RSI) could be caused by radiation emitted from keyboards. (重复性劳损可能是由键盘释放的电磁幅射引起的,LSZ译)No, we're not making this up.(我们不是开玩笑的,SF译;我们并不是在危言耸听,LSZ译)
A letter published in the December edition of Journalist, the magazine of the National Union of Journalists (NUJ), speculates whether the "electromagnetic radiation immediately under each fingertip" could be to blame for the debilitating and painful condition.
The letter reads: Has anyone explored the possibility of RSI being caused by the radiation emitted by keyboard strokes every time one keys a letter? The make-and-break of electronic keys must issue a short burst of electromagnetic radiation immediately under each fingertip and the body's nervous system comprises a myriad of electrical pathways - might it not have a cumulative adverse effect?


说法4:
http://www.safety.uwa.edu.au/policies/computer_workstation_ergonomics

Keyboard equipment and radiation
Computer screens emit visible light which allows the characters on the screen to be seen. Weak electromagnetic fields and very low levels of other radiation, not visible to the human eye, can be detected by sensitive instruments. Similar emissions are produced by television receivers.
The levels of most radiations and electromagnetic fields emitted from computers are much less than those from natural sources, such as the sun or even the human body and are well below levels considered to be harmful by responsible expert bodies such as the International Radiation Protection Association (IRPA).

防键盘辐射的设备:
http://www.lessemf.com/computer.html

Reduce Electric Fields from your Keyboard!
VeilShield is a high performance shielding fabric which is very sheer and easy to see through. Simply drape it over your keyboard, mouse, or any other device and you can still see and operate almost like normal. Stock material is 58 inches wide and very easy to trim to any size with ordinary scissors. Specify length when ordering. Remember, you will need to purchase a ground cord!

2008年8月23日星期六

火星机复活了

昨天和朱一起努力了半天,火星机貌似复活了。

用了一年多,都没什么问题,但这两个月出现使用中突然黑屏,摸上去温度有点高。

HP的笔记本散热的确不是很好,但是突然出现问题,感觉是软件的问题。我觉得最值得怀疑的是金山毒霸,老是在后台自己更新,使机器变慢,而且经常查毒的话,回让CPU占用率高,硬盘转得多,发热也高。没有连上网的时候,经常提示要连接到网络,也不知道是不是中毒了。

后来用HP的自动恢复功能恢复了一下,用回原来的Norton,居然还有3个月的使用期。以后可以用360卫士试试看。

软件也不多装了,Firefox 3、MSN、TM、WPS,本来是想装Lotus Symphony的。

连续用了6个小时,也没发现什么问题。


2008年8月21日星期四

DL型、定时限、电磁式,GL型、反时限、感应式

http://www.dzyd.com/xxzx/gw050603.html

DL型
为了实现过电流保护的选择性,应将线路各段的保护动作时间按阶梯原则来整定,即离电源端越近时限越长。每段时限级差一般为 0.5秒。继电器的动作时间和短路电流的大小无关。采用这种动作时限方式的称为定时限。定时限过流继电器为电磁式,配有时间继电器获得时限特性,其型号为DL型

GL型

反时限是使动作时间与短路电流的大小无关,当动作电流大时,动作时间就短,反之则动作时间长,利用这一特性做成的继电器称为反时限过流继电器。它是感应 式,型号为GL型。它的动作电流和动作时间的关系可分为两部分:一部分为定时限,一部分为反时限。当短路电流超出一定倍数时,电流的增加不再使动作时间缩 短,此时表现为定时限特性。

2008年8月20日星期三

电动机负荷的负载系数、使用系数、同时系数


www.ise.ufl.edu/capehart/papers/diversity.doc
http://www.ise.ufl.edu/capehart/papers/diversity.html
http://www.ise.ufl.edu/capehart/papers/ebaltemp.xls

这些东西是一个叫Barney L. Capehart教授的资料里面找到的,主要是用于计算用电费用。他的Use (or utilization) factor是用于计算用电量的,不是一般所说的利用系数,这里暂时称为使用系数,使用系数x年使用小时基数=年使用小时数。利用系数和这里Load factor 比较接近,这里暂时称为负载系数。Diversity factor 就是同时系数。

Definitions:
  1. Load factor - the ratio of the load that a piece of equipment actually draws when it is in operation to the load it could draw (which we call full load).
     For example, an oversized motor - 20 hp - drives a constant 15 hp load whenever it is on. The motor load factor is then 15/20 = 75%.  

  2. Use (or utilization) factor - the ratio of the time that a piece of equipment is in use to the total time that it could be in use.
     For example, the motor above may only be used for eight hours a day, 50 weeks a year. The hours of operation would then be 2000 hours, and the motor use factor for a base of 8760 hours per year would be 2000/8760 = 22.83%. With a base of 2000 hours per year, the motor use factor would be 100%. The bottom line is that the use factor is applied to get the correct number of hours that the motor is in use.  

  3. Diversity factor - the probability that a particular piece of equipment will come on at the time of the facility's peak load.
     The diversity factor is the most complicated of these factors. For example, we might have ten air conditioning units that are 20 tons each at a facility. In Florida we typically assume that the average full load equivalent operating hours for the units are 2000 hours per year. However, since the units are each thermostatically controlled, we do not know exactly when each unit turns on. If the ten units are substantially bigger than the facility's actual peak A/C load, then fewer than all ten units will likely come on at once. Thus, even though each unit runs a total of 2000 hours a year, they do not all come on at the same time to affect the facility's peak load. The diversity factor gives us a correction factor to use, which results in a lower total kW load for the ten A/C units. If the energy balance we do for this facility comes out within reason, but the demand balance shows far too many kW for the peak load, then we can use the diversity factor to bring the kW into line with the facility's true peak load. The diversity factor does not affect the kWh; it only affects the kW.


Motor load factors in many facilities are more in the range of 40% - 50%, than in the range of 80% that had been a standard assumption for many years of doing audits. Rarely do you find a motor running at 100% load factor.

However, not all motors at a facility are running at the same load factors. Ventilating fans that come from a supplier as a packaged unit with a fan and a motor are most often assumed to be operating at near full load. You should probably use a load factor of 80% here, since the manufacturer of the ventilating fans should have reasonably matched these loads. Other motors may also be in this category - some engineering judgment and common sense are required to determine which other motors these are.  

Motors with variable loads are going to have the lowest load factors in general. A dust collector fan motor will normally have quite a variable load, and would often be expected to have a low load factor. Other examples are saws, presses, milling machines, sanders and grinders, waste grinders, water pumps, hydraulic pumps, etc. 

If a group of motors do not all operate together all of the time, then using a diversity factor is appropriate. This is the case with a number of separate air conditioning units (considering the motors for the compressors) that are individually thermostatically controlled. It could also be the case for a group of production motors if some of the motors are not in use all of the time. You should use a diversity factor in your motor calculations, since it is not often the case that a facility has all of the motors on at the same time.

Reconciling the energy balance: When you perform an energy balance, do not use the motor load factor as the first and only adjustment made to reconcile the estimated energy use (energy balance) with the energy bills. Making this adjustment too quickly results in failure to pick up other things that have been overlooked.

For example, if the energy use does not balance with the energy bills, the first step is to check to see that all of the equipment and uses have been accounted for.

Do the items on the energy balance spreadsheet match your recollection of the equipment you saw in the facility?
Does anything appear to be missing?
Are the utility bills for total energy use and peak kW recorded correctly?

The next step is to check the hours of use for lights and other equipment to see if it matches your knowledge of the facility's operation. Remember that each motor - as well as each other piece of equipment - does not necessarily operate the same number of hours each day or year. Finally, if some of the equipment does not come on at the same time as the facility peaks in kW use, then utilize the diversity factor to account for this.

Adjusting the motor load factors should probably be the last thing you do to reconcile the energy and demand balances. Now, if all other information and all other factors are correct to the best of your knowledge, then adjust the load factors. While motor load factors are not often in the range of 80-100%, you should be equally suspect of very low motor load factors. If you get motor load factors in the range of 20-30%, it is more likely that you have the hours of use wrong than that you have a facility which is using motors that are an average of four times too big for the job they are doing. Lumber mills and wood products facilities using lots of saws may have these low load factors. Most other places should have motors with a higher load factor.

Basic motor load measurements should be taken at the plant visit. The electrical person at the facility is generally willing to measure the current being drawn by a motor of interest. Air compressors are ones that are usually easy to do, and you should ask the plant personnel to do this for you. Let them open the motor controller or switch box and connect a clamp-on ammeter to see what the current for the motor is. You then need to know the full load current from the nameplate of the motor. The ratio of the actual current to the full load current is the approximate load factor on the motor at that time. This procedure works as long as the current is greater than or equal to about 50% of the full load current. Try to take this measurement for each of the large motors in the facility - i.e. motors of 50 hp and above; or even 20 hp or above if the facility does not have a lot of big motors. If you have not received formal electrical safety training, you should not make these electrical measurements yourself. If the facility electrician does not want to make these for you, then let it go at that.

Air handlers―use factor: Air handlers use motors and are subject to all of the comments made in the motor section. In addition, you may be able to get a better handle on the hours of use for the air handlers by knowing how the A/C system works. Ask if the air handlers run constantly when the facility is occupied. They might if the facility wants the ventilation, even though the compressors might not come on except to periodically provide some temperature reduction or moisture removal. If this is the case, then the use factor for these air handler motors should reflect an hours-of -use that matches the offices or other area that the air handlers supply. In addition, the hours-of-use must also consider the compressor run hours. Thus the total hours for the air handlers must be at least the same as the compressor hours, and may be higher if the A/C unit is left on during periods that the facility is not occupied, or if ventilation is provided.

If the air handlers only come on when the thermostat orders cooling, then the hours-of -use must be the same as the hours-of-use of the compressors.

It is important to get adequate information on the operation of the air conditioning system. To get complete data on the air handler motors for an air-conditioned facility, you will need all of the standard information - size, maker, single or three phase, etc - together with the operating basis for the air handlers discussed above.

You should also collect data on the drive belt system for air handlers. Record the number of belts, the lengths, and the types of belts. Ask about motor and drive lubrication and cleaning. Also check the A/C filters to see if they are reasonably clean.

Sometimes a visual inspection will show some real problems. Ask the maintenance person to open up one of the air handlers - or just look into it (SAFELY) if it is accessible - and see if the belt is tight, slack, or really loose. Do not stick your hand into an air handler that is off at the moment, and may come back on when the thermostat kicks in. Have the maintenance person turn the air handler motor off with the circuit breaker or control box. Do not put your finger on a moving drive belt.

Is the belt in good shape?
Is it frayed, cracked or coming apart?
Does it look like the pulleys for the motor and the fan are lined up?

Ask the electrician to measure the current that the air handler motor is drawing to see what its load factor is while driving the fan. It should be very near full load - but you never know. Maybe the original motor burned out and was replaced with a bigger one to "make sure it did not burn out again." Remember to take the full load current off the nameplate to find the load factor.

电动机负荷的负载系数、使用系数、不同时系数

www.ise.ufl.edu/capehart/papers/diversity.doc
http://www.ise.ufl.edu/capehart/papers/diversity.html
http://www.ise.ufl.edu/capehart/papers/ebaltemp.xls

这些东西是一个叫Barney L. Capehart教授的资料里面找到的,主要是用于计算用电费用。他的Use (or utilization) factor是用于计算用电量的,不是一般所说的利用系数,这里暂时称为使用系数,使用系数x年使用小时基数=年使用小时数。利用系数和这里Load factor 比较接近,这里暂时称为负载系数。Diversity factor 就是不同时系数。

Definitions:
  1. Load factor - the ratio of the load that a piece of equipment actually draws when it is in operation to the load it could draw (which we call full load).
     For example, an oversized motor - 20 hp - drives a constant 15 hp load whenever it is on. The motor load factor is then 15/20 = 75%.  

  2. Use (or utilization) factor - the ratio of the time that a piece of equipment is in use to the total time that it could be in use.
     For example, the motor above may only be used for eight hours a day, 50 weeks a year. The hours of operation would then be 2000 hours, and the motor use factor for a base of 8760 hours per year would be 2000/8760 = 22.83%. With a base of 2000 hours per year, the motor use factor would be 100%. The bottom line is that the use factor is applied to get the correct number of hours that the motor is in use.  

  3. Diversity factor - the probability that a particular piece of equipment will come on at the time of the facility's peak load.
     The diversity factor is the most complicated of these factors. For example, we might have ten air conditioning units that are 20 tons each at a facility. In Florida we typically assume that the average full load equivalent operating hours for the units are 2000 hours per year. However, since the units are each thermostatically controlled, we do not know exactly when each unit turns on. If the ten units are substantially bigger than the facility's actual peak A/C load, then fewer than all ten units will likely come on at once. Thus, even though each unit runs a total of 2000 hours a year, they do not all come on at the same time to affect the facility's peak load. The diversity factor gives us a correction factor to use, which results in a lower total kW load for the ten A/C units. If the energy balance we do for this facility comes out within reason, but the demand balance shows far too many kW for the peak load, then we can use the diversity factor to bring the kW into line with the facility's true peak load. The diversity factor does not affect the kWh; it only affects the kW.


Motor load factors in many facilities are more in the range of 40% - 50%, than in the range of 80% that had been a standard assumption for many years of doing audits. Rarely do you find a motor running at 100% load factor.

However, not all motors at a facility are running at the same load factors. Ventilating fans that come from a supplier as a packaged unit with a fan and a motor are most often assumed to be operating at near full load. You should probably use a load factor of 80% here, since the manufacturer of the ventilating fans should have reasonably matched these loads. Other motors may also be in this category - some engineering judgment and common sense are required to determine which other motors these are.  

Motors with variable loads are going to have the lowest load factors in general. A dust collector fan motor will normally have quite a variable load, and would often be expected to have a low load factor. Other examples are saws, presses, milling machines, sanders and grinders, waste grinders, water pumps, hydraulic pumps, etc. 

If a group of motors do not all operate together all of the time, then using a diversity factor is appropriate. This is the case with a number of separate air conditioning units (considering the motors for the compressors) that are individually thermostatically controlled. It could also be the case for a group of production motors if some of the motors are not in use all of the time. You should use a diversity factor in your motor calculations, since it is not often the case that a facility has all of the motors on at the same time.

Reconciling the energy balance: When you perform an energy balance, do not use the motor load factor as the first and only adjustment made to reconcile the estimated energy use (energy balance) with the energy bills. Making this adjustment too quickly results in failure to pick up other things that have been overlooked.

For example, if the energy use does not balance with the energy bills, the first step is to check to see that all of the equipment and uses have been accounted for.

Do the items on the energy balance spreadsheet match your recollection of the equipment you saw in the facility?
Does anything appear to be missing?
Are the utility bills for total energy use and peak kW recorded correctly?

The next step is to check the hours of use for lights and other equipment to see if it matches your knowledge of the facility's operation. Remember that each motor - as well as each other piece of equipment - does not necessarily operate the same number of hours each day or year. Finally, if some of the equipment does not come on at the same time as the facility peaks in kW use, then utilize the diversity factor to account for this.

Adjusting the motor load factors should probably be the last thing you do to reconcile the energy and demand balances. Now, if all other information and all other factors are correct to the best of your knowledge, then adjust the load factors. While motor load factors are not often in the range of 80-100%, you should be equally suspect of very low motor load factors. If you get motor load factors in the range of 20-30%, it is more likely that you have the hours of use wrong than that you have a facility which is using motors that are an average of four times too big for the job they are doing. Lumber mills and wood products facilities using lots of saws may have these low load factors. Most other places should have motors with a higher load factor.

Basic motor load measurements should be taken at the plant visit. The electrical person at the facility is generally willing to measure the current being drawn by a motor of interest. Air compressors are ones that are usually easy to do, and you should ask the plant personnel to do this for you. Let them open the motor controller or switch box and connect a clamp-on ammeter to see what the current for the motor is. You then need to know the full load current from the nameplate of the motor. The ratio of the actual current to the full load current is the approximate load factor on the motor at that time. This procedure works as long as the current is greater than or equal to about 50% of the full load current. Try to take this measurement for each of the large motors in the facility - i.e. motors of 50 hp and above; or even 20 hp or above if the facility does not have a lot of big motors. If you have not received formal electrical safety training, you should not make these electrical measurements yourself. If the facility electrician does not want to make these for you, then let it go at that.

Air handlers―use factor: Air handlers use motors and are subject to all of the comments made in the motor section. In addition, you may be able to get a better handle on the hours of use for the air handlers by knowing how the A/C system works. Ask if the air handlers run constantly when the facility is occupied. They might if the facility wants the ventilation, even though the compressors might not come on except to periodically provide some temperature reduction or moisture removal. If this is the case, then the use factor for these air handler motors should reflect an hours-of -use that matches the offices or other area that the air handlers supply. In addition, the hours-of-use must also consider the compressor run hours. Thus the total hours for the air handlers must be at least the same as the compressor hours, and may be higher if the A/C unit is left on during periods that the facility is not occupied, or if ventilation is provided.

If the air handlers only come on when the thermostat orders cooling, then the hours-of -use must be the same as the hours-of-use of the compressors.

It is important to get adequate information on the operation of the air conditioning system. To get complete data on the air handler motors for an air-conditioned facility, you will need all of the standard information - size, maker, single or three phase, etc - together with the operating basis for the air handlers discussed above.

You should also collect data on the drive belt system for air handlers. Record the number of belts, the lengths, and the types of belts. Ask about motor and drive lubrication and cleaning. Also check the A/C filters to see if they are reasonably clean.

Sometimes a visual inspection will show some real problems. Ask the maintenance person to open up one of the air handlers - or just look into it (SAFELY) if it is accessible - and see if the belt is tight, slack, or really loose. Do not stick your hand into an air handler that is off at the moment, and may come back on when the thermostat kicks in. Have the maintenance person turn the air handler motor off with the circuit breaker or control box. Do not put your finger on a moving drive belt.

Is the belt in good shape?
Is it frayed, cracked or coming apart?
Does it look like the pulleys for the motor and the fan are lined up?

Ask the electrician to measure the current that the air handler motor is drawing to see what its load factor is while driving the fan. It should be very near full load - but you never know. Maybe the original motor burned out and was replaced with a bigger one to "make sure it did not burn out again." Remember to take the full load current off the nameplate to find the load factor.

2008年8月19日星期二

只剩下一个月

离注册考试只有一个月了,上个星期因为种种原因没有静下心来。

首先是奥运,这种体育盛会随便挑出一个时段来都会有好看的节目,只有你看不完。

然后是熊猫猪出现了,还是一头病的熊猫猪.虽然被封为小熊猫,还是要不时打打杂。

最后就是最浪费时间的事--看网络小说.最近看的是<魔法炒手>,感觉不错。

最大的感受是只要你有理论、实践、创新,到哪里都可以发挥作用。东西还是要好好学,用心体会。

希望能再次回到轨道上来。

2008年8月12日星期二

开式系统和闭式系统水泵变频的经典分析

http://www.ehvacr.com/lw/HTML/4448.html

开式系统中变速泵的节能分析
狄洪发,男,1945年1月生,大学,教授,北京清华大学建筑技术科学系

看了一些书和资料,觉得这篇文章介绍得最好了,可以说是经典。很少书对相似定律讲得比较清楚,这篇文章清楚地介绍了相似工况的定义、成立的条件,并举了两个例子说明这个问题,还进行了详细的变频节能计算分析。清华大学的老教授,是有真才实学,讲得清晰易懂。

当然,文章论述的功率,是指水泵的轴功率,和电机消耗的电功率还有点不同。

开式系统中变速泵的节能分析

摘要:变速泵在开式和闭式管路中的节能效果不同,引起这种差别的原因是开式系统受水的静压作用改变了泵的效率。分析了开式管路系统中变速泵的节能效果并给出了计算实例。
关键词:变速泵 节能 开式系统

0 引言

  变速泵在空调供暖系统中的应用,对于改善系统调节性能、节省运行费用发挥了很大作用。在闭式循环系统中,其节能效果非常明显,因此得到广泛的应 用。目前在不少开工系统中,也使用了变速泵,例如在供暖补水泵定压系统中,补水泵也采用了变速调节。由于水的重力作用,在闭式系统与开式系统中,采用变速 泵的节能效果显然不同。随着开式系统水提升高度的增加,变速泵的节能效果进下降低,在流量变化大的闭式系统中应用变速泵肯定有明显的节能效果,但在开式系 统中采用变速泵是否节能,要根据管路的实际情况从投资和运行费用角度综合分析。

  1 基本方程

  1.1 泵的相似工况

  由泵的相似定律       (1)

  即

  有     (2)

  式中p1,p2,分别为转速n1,n2下泵的扬程,G1,G2分别为转速n1,n2下泵的流量,N1,N2分别为转速n1,n2下泵的功率,C为常数。

  式(2)表明,只要泵在转速n1下的工作点A和转速n2下的工作点B(简称工况A,B)相似,则泵扬程与流量平方的比值是一个常数;同时可以得知,如果两个工相似,则这两个工况下泵的效率必然相同。实际上,式(2)也表示了泵的等效率曲线式

          (3)

  在一定转速下,泵的工作点管路阻力的变化而变化。对于某一确定的管路,常数C可用式(2)求得。式(2)还表明,即使泵的工作点随着运行情况变化,但只工作点在该曲线上,则泵的效率就不会发生变化。

  1.2 变速泵节能分析

  泵的转速泵从n1从调整到n2后泵的轴功率从N1,变到N1,由轴功率 知,若把水看成不可压缩流体,则在工况A,B下功率之比为

           (4)

  如果工况A,B在等效率曲线上,则ηab,且 。也就是说,式(1)成立的条件必须是泵的工作点A,B均在等效率曲线上。

  1.3 管路水力特征

  管路系统A,B两点间流动的压力总损失pab与流量G存在着上述特征关系

          pab= po+SG2 (5)

  式中po为A与B两点间水的静压。闭式管路系统的终点和起点生命,因此po=0;开式管路系统的终点和起点不重合,且一般情况下A,B两点之间的压差不0。S为管路阻力系数,在水管路系统中可以认为S值的大小与流量无关而仅与管路结构有关,因此对于一个具体的管路系统而言,S是一个不随流量变化的常数值。记SG2=Δp,它表示了流体磨擦阻力的大小与流量的平方成正比;当知道了管路结构后就可以求得po和S值,从而由式(5)得到管路的特征曲线。

  2 闭式系统中变速泵的节能分析

  在闭式系统中,泵作功所输出的能量完全消耗在克服水在管路中流动时的磨擦阻力,也就是说泵的扬程p等于整个管路的压降。这样,当流量发生变化后,泵的能耗自然也成比例地变化。

  2.1 泵与管路联合工作点

  泵的工作点为泵的特征曲线与管路特征曲线的交点,如图1所示的闭式管路系统中的A点,其对应的流量、压力及效率分别为Ga,pa及ηa。 图中效率曲线η是针对转速n1而言的。

图1 闭式系统性能曲线

  闭式管路中流动阻力损失等于泵的扬程,即Δp=p,且po=0,则由式(5)有

      (6)

  对比式(2)与式(6)不难发现C=S,这表明在闭式管路系统中泵的等效率曲线与管路特征收与管路特曲线完全重合。把该管路的阻力系统记作 ,则C=Sa,因此泵的等效率曲线方程和管路特征曲线均为p=SaG2。当泵转速从n1变到n2时,泵的工作点从A点变到B点,B点仍在管路特征曲线上。由于泵的等效率曲线与管路特征曲线重合,则泵在A,B两点的效率ηab,这是闭式管路系统所具有的特点。

  2.2 变速泵的节能

  当泵转速从n1调整到n2后,泵的特征曲线变化如图1所示。在ηab的条件下,由式(4)知A,B工况功率之比为

               (7)

  也就是说,泵的功率与转速的三次方成正比。因此在闭式水系统中变速泵的节能效果是非常明显的。

  3 开式管路系统中变速泵的节能分析

  一供热系统如图2所示,使用高位膨胀水箱定压。该供热系统中,补水泵在开式管路系统中运行,而循环泵则在闭式管路系统中运行。当用户热负荷发生 变化后,如使用中央量调、循环泵为变速泵,如上分析则循环泵所消耗的功率与转速的三次方成比。但补水泵在开式管路系统内,当补水量发生变化且补水泵亦为变 速泵时,泵转速变化后泵所消耗的功率并非与转速的三次方成正比,因为受到了开式管路系统进出口高差H的影响。

  3.1 开式管路系统水力特性

  开式管路中泵的提供的扬程一方面消耗在克服流动阻力上,另一方面还消耗在提升水的高度上。如图2,式(5)所示压力总损失p=po+SG2中的po即时H=20m带来的静压。知道管路结构后即可求得管路的阻力系数S值。因此,知道po和S后就可以画出管路特征曲线,如图3所示。由泵的特征曲线和管路特征曲线的交点得到泵在转速n1下的工作点A,从而得到A点的流量Ga及泵的扬程pa,此处pa即为式(5)中的pab。为表示明确,管路的阻力系数也可写为:

            (8)

图2 系统示意图

  3.2 开式管路中变速泵的等效率曲线

  为分析比较方便,设开式管系统中变速泵在转速n1的工作点A与闭式管路系统相同,如图3。当补水量发生变化后泵的转速从n1变到n2,此时泵的工作点沿着管路特征曲线从A变到B′点,B′点所对应的流量和压力为Gb′,pb′。泵在B′点效率η′b并不一定等于A点的效率ηa,因为A,B′两个工况并不相似。

  如上分析在闭式管路中过A点的等效率曲线方程中C=Sa,作p=SaG2曲线与泵在n1下的性能曲线之交点得到对应的效率ηa。在开式管路系统中等效率曲线式(3)中的p此时对应p ab,同样把式(3)中的常数C记作C a,则 。但开式管路系统的阻力系统数 ,因为p0≠0,所以C a ≠S0。也就是说在p0≠0的开式管路系统中泵的等效率曲线与管路特征曲线不重合。把A,B′点的等效率曲线常数:

               (9)

            (10)

  已知Gb′后可以由等效率曲线方程p= Gb′G2得到过程B′点的等效率曲线,该等效率曲线与转速n1下的泵性能曲线交点为B′′,由B′′得到此时泵在转速n1下的效率η′b,如图3。

                     图3 开式系统性能曲线1

  3.3 节能分析

  在泵转速从n1调整到n2后,把A,B′工况对应的Ga,pa,ηa及Gb′,pb′,η′b值代入式(4),即得到节能比。需要注意,即使假设此时ηab,转速变化后的节能比也只能由 求得,而不等于 。因为在开式管路系统中po≠0,A,B′点不在等效率曲线上,因此不能直接使用式(1)。

  4 算例

  可以用解析法或作图法来求解。假设泵在n1下的性能曲线方程为p=α01G+α2G2,则在n2下的方程为p=α0′+α1′G+α2′G2,其中α0,α1,α2为已知系数α0′=α0k2,α1′=α1 k,α2′=α2,转速比。根据上两式及式(5)、(6)、(7)、(9)及(4)联立即可求得相应的数值,本文利用作图法求解,以便于理解。

  4.1 闭式系统

  如图2所示闭式管路系统中循环泵,设转速n1=1100r/min调整到n2=860 r/min,工作点分别为A,B。由图1得A点G a =12.85m3/h,p a =330.2kpa,η a =0.75,B点G b =10.05m3/h,p b =201.7kpa,则由式(3)得功率比

  4.2 开式系统中保持转速n2 与闭式系统的转速相同

  如图2,补水泵在开式管路系统中,同样,泵转速从1100r/min调整到n2=860 r/min,即n2相同,工作点由A变到B′,由图3知B′点的Gb′=5.95m3/h,p′ b =227.8kPa.由式(10)得到过B′点的等效率曲线系数Gb′=0.643,等效率曲线p=0.643G2与转速n1下的泵性能曲线的交点为B′′,B′′对应的效率ηb′=60%。因此在A,B′两工况下的功率。泵在A,B′两点效率不同对节能的影响不可忽视,如果不计泵效率的变化,则。与实际值的相对偏差为20%,而这一点往往容易被忽略。

  4.3 开式系统中,保持流量Gb′与闭式系统的流量相同

  当n2相同时,开式系统B′点的流量Gb′肯定小于闭式系统B点的流量Gb。假若仍希望Gb′= Gb=10.05 m3/h,则闭式、开式系统的n2肯定不相同。如图4,当开式系统的转速调整到n2′=998r/min时,则Gb′=10.05 m3/h,此时闭式系统n2=860r/min下的流量相同,闭式系统的等效率曲线为过A,B的曲线,而开式系统的等效率曲线为过B′,B′′的曲线。从图4可以求得,闭式系统在转速n2=860r/min下所对应的效率为0.75,开式系统在转速n2′=998r/min时所对应的效率为0.68。据式(4)知, 。因此,对于开式、闭式系统当流量均从12.85 m3/h变到10.05 m3/h时,开式系统节能效果只有闭式系统的73%。

                     图4 开式系统性能曲线2

  5 结论

  5.1 在开式管路系统中,泵变速前后工作点A,B′并不在同一等效率曲线上,因此A,B′点所对应的效率不相等。在分析变速泵的节能效果时,应考虑效率不同所带来的影响。

  5.2 在闭式和开式管路系统中,泵转速虽然都是从n1变到n2,但两者的节能效果并不相同。在本文的算例中,闭式系统中泵的节能效率47.8%,而开式系统中节能效率为39.9%。这主要是由于开式系统受静水压p0的影响。如果p0=0,则节能效率相同;p0值越大,两者的节能效果差别也就越大。

  5.3 在闭式和开式管路系统中,如果保持变速前后的流量都相同,则开式系统的节能效果要小于闭式系统,p0越大,开式系统节能效果越差。

  参考文献

  1 钱以明,高层建筑空调与节能,上海:同济大学出版社,1990

  2 江亿,用变速泵和变速风机代替调节用风阀水阀,暖通空调,1997,27(2):66~71

  3 李向东,李百萍,牟灵泉,变频调速装置在空调水系统中的应用,暖通空调,1997,27(4):62~65

  作者简介:

  1.狄洪发,男,1945年1月生,大学,教授,100084 北京清华大学建筑技术科学系,(010)62779996。

 



灭魔还是灭神

《灭魔志》两本终于看完了。

不知道为什么会用灭魔志这个书名?

开始的魔可以升天为神,开始的神会沦为阶下囚。

在网络小说里面,人鬼神三者中,一般人是正、神是邪、鬼比较中立。《无赖邪佛》也是这样。

是现在的作家要挑战权贵,还是现在的权贵让人不屑?

人类中也不乏顶尖的高手,在和游手好闲的神仙搏斗时,也不会落于下风。

高高在上的神仙们啊,如果做出伤害人类的事情,迟早会被灭掉的。

神仙映射的是什么?不言而喻了。

《灭魔志》写得挺好的,除了开始的几节比较无厘头。

《无赖邪佛》从开始就写得不错,可惜后面更新太慢了。

2008年8月11日星期一

电脑功率

http://diybbs.pconline.com.cn/topic.jsp?tid=8736182

【我们如何测试?】

本次测试的平台至少都是双核处理器,而高端平台更是选择了Intel的4核处理器。在测试中,我们将就每一种平台在各方面的实际应用环境进行功耗测试,同时考虑到用户的升级需求,我们在每一种平台上都采用了两款显卡进行测试,其中一款比原有平台显卡性能更高,这是因为升级显卡是目前最有效的提升性能手段。

在测试仪器上,我们选择了专业的功率测试仪,能有效地测试出每个平台在不同环境下的即时功率。此外,在这里我们测试的系统整体平台功耗包括了20英寸LCD显示器。


【低端平台实际功耗测试】

测试平台:处理器:Athlon64 X2 4000+ 主板:NV C68 显卡:集成/8600GT
内存:金士顿 DDR2 800 1G×2 硬盘:希捷7200.10 250G 显示器:华硕MW201U
电源:长城BTX- 500SD

集成显卡环境下功耗测试: 待机116.6W 最高160.6W
8600GT显卡环境下功耗测试: 待机125.4W 最高178.2W


【中端平台实际功耗测试】

测试平台:处理器:Intel Core2 Duo E4300 主板:Intel P31 显卡:
7600GT/8800GT 内存:金士顿DDR2 800 1G×2 硬盘:希捷7200.10 250G
显示器:华硕MW201U 电源:长城BTX-500SD

7600GT显卡环境下功耗测试: 待机121W 最高158.4W
8800GT显卡环境下功耗测试: 待机121W 最高200.2W


【高端平台实际功耗测试】

测试平台:处理器:Intel Core2 Quad Q6600 主板:Intel X38 显卡:
8800GT/8800Ultra 内存:金士顿DDR2 800 1G×2 硬盘:希捷7200.10 250G
显示器:华硕MW201U 电源:长城BTX-500SD

8800GT显卡环境下功耗测试: 待机169.4W 最高250.8W
8800Ultra显卡环境下功耗测试: 待机228.8W 最高341W


随着电脑速度越来越快,配电时按400W,0.8系数也不过分了。

2008年8月8日星期五

奥运开幕式看点不多

从8点到12点,看了整整4个小时。

最有印象的是29个烟花脚印,很震撼;小朋友们唱国歌和抬国旗,很可爱;中国队出场,姚明和一个映秀的小英雄,很感动。

开始像打鼓的那一幕也算还可以,不过时间长了点,翻来覆去的;最后李宁点火炬有点夸张,估计要把他给累坏了,而且场面上感觉也很一般。

其他什么中国画、京剧、活字印刷之类的简直不知道想干什么,色彩也不好看,比较失败。

观众散场要到家估计凌晨2、3点左右吧;运动员可能优先一点,但明天如果有比赛也会影响竞技状态的。

张艺谋就不能少耗点时间,放大家一马。

Firefox 原来指的是 小熊猫

zh.wikipedia.org/wiki/小熊�

小熊猫又名红熊猫、红猫熊、小猫熊,有时在中文中也称火狐,英文中亦有"Fire
Fox"既是对其的直接译名,是一种哺乳类动物,分布在中国南方到喜马拉雅山麓。属于食肉目、小熊猫科。它究竟应该列在熊科或浣熊科是多年来一直被争论的问题,最近经过基因分析,认为与美洲大陆的浣熊亲缘关系最接近,应该单独列为小熊猫科。

小熊猫长约50至60厘米,体重约3至5公斤,身体躯干毛为栗色,四肢和腹有些黑色毛,面部白色花纹不像大熊猫那样明显,但前爪根骨的一部分突起成手指状,可作为第6手指抓握物品,和大熊猫相同。

"熊猫"这个名称其实是小熊猫先取得的,但是后来的大熊猫更广为人知,所以单称"熊猫"的时候多指的是大熊猫。

法国的博物学者乔治・居维叶(Georges Cuvier)的弟弟动物学者弗列德利克・居维叶(Frédéric
Cuvier)看到小熊猫的标本相当感动,因此以希腊文中的"火焰色的猫(Ailurus fulgens)"作为其学名。

英文中则有"Red Panda"、"Wah"、"Firefox"等名称,最后的Firefox即是有名的开放源代码浏览器Mozilla
Firefox的来源,但是该浏览器的图案画的却比较接近有着火尾巴的狐狸。

2008年8月1日星期五

清洗消毒碗柜

感觉家里的消毒碗柜有股味道,趁周末要清洗一下。

这台是嵌入低柜式的,跟以前的挂墙式不一样。把碗碟都拿出来以后,发现里面的金属架不能卸下来,是固定在导轨上的。由于是嵌入在低柜,每次拿东西都要把金属架拉出来,所以用导轨的话滑动比较顺畅,但要拆下来清洗就不方便了。

柜里面有一滩水渍,朱说把金属架拆下来清洗方便,就准备拆金属架了。

金属架和导轨每边有三个螺帽,外面的两个可以直接看到螺钉,最里面的一个只能拧螺帽。把两边最里面的螺帽拧下来,发现螺钉一个长一个短,左边长的还冒出个头,右边短的直接掉入导轨,然后滚了出来。把其他螺帽都下下来,金属架移出来,最里面左边的长螺钉还卡在导轨的孔上,是弄不下来的。

清洗完以后,准备把金属架装上去。

里面右边的短螺钉要放回原来的孔很难,螺钉的头太大,直接从孔里放进去不行。由于短螺钉是从导轨上滚出来的,只好从导轨上下功夫。突然发现导轨有个地方比较深,把短螺钉放进去,在把孔滑到螺钉的地方,就可以从孔看到螺钉了。由于螺钉短,孔小,手指够不着,又找不到镊子,就用两根牙签将螺钉夹出一点,再用手拉出一截。为了防止螺钉再掉进去,还拿胶布在外面贴了一下。

将金属架右边最后的孔小心翼翼的对准短螺钉,套上去,压到底,螺钉露出一截,再将左边的孔对准长螺钉,套上,压进一点。先给小螺钉上螺帽,拉一下导轨,让小螺钉相对好固定,上几下螺帽,然后到长螺钉。最里面的两个螺帽上好,到前面的螺帽了,发现只有一个孔对得上。原来,最里面应该对金属架倒数第二个孔。按前面的步骤重新弄了一遍,终于把金属架上上去了。

想起还有块胶布粘在短螺钉上,消毒的时候加热可能会有毒,又将金属架拆下来,胶布撕下,更小心的重装了一次。其实只要在套短螺钉的时候注意点,其它的都比较好做。

费了一大堆劲,觉得不值,有水渍的地方只要把金属架拉到尽头,还是可以擦到的。如果要洗金属架,就真的只能拆下来了。

买设备的时候一定要买容易清洗和维护的,不然的话会做得一身筋。

HITACHI 空调机遥控器 RAR 22Z 没有反应

朱在抱怨遥控器不听她的。昨晚半夜就抱怨了一次,后来我从甜梦中醒来,一按就好了。

但这次真的没有反应,按开关没有反应,按调温度的高低按钮时屏幕上的数字不动。

怀疑是死机,把电池卸了重新装上去,结果更糟了。先是满屏的笔画(能黑的地方)都黑了,然后出现一个时间一闪一闪,按什么都没有反应。

家里还没有备用的7号电池,趁着朱出去买电池的空隙,我把遥控器拆了下来,看着电路板找不到下手的地方。接着上网查资料,也查不到。原来进口的老古董还真不好找资料。也不知道所谓的万能遥控器能不能用。

等新电池来了,装上去,还是跟原来一样,时间一闪一闪,按调温度的高低按钮,屏幕上连数字都没有。

怀疑是芯片或者电路板坏了。

后来无意中按了个按钮,屏幕出现了发射的图案。觉得有戏,又瞎按了几个,把制冷的图案弄了出来,这下有温度的数字出来了,而且可以调。一按开机按钮,也开机了。一闪一闪的时间在随便按了几次调时间那部分的按钮后也消失了,一切回到原来能使用时的状态。

原来开始是电池电量不够了,换电池后进入了一个初始状态,可以调节时间之类的,要通过状态转换按钮进入制冷或者其他模式才能调温度。用温度调节按钮来试有没有反映还不如用状态转换按钮来试。

终于排除了一个故障。

为什么回来以后每个周末都要发生点事情?先是电脑,然后是搬床,现在是空调遥控器。有完没完啊?

干式变压器的分类

http://www.sunel.com.cn/cp/scb.htm
http://www.cnsb.cn/product/show_pt.asp?info_id=1152534


干式变压器可按相数、绝缘类型、温度等级,绕组类型分类。

相数:
S 三相
D 单相

绝缘类型:
C(环氧树脂浇注包封式/CRDT)、
CR(非环氧树脂浇注固体绝缘包封式/缠绕式环氧树脂包封)、
G(敞开式/浸渍绝缘/OVDT),分VI(真空浸渍)或VPI(真空压力浸渍)

绝缘的温度等级 :
A级 E级 B级 F级 H级 N级 C级
最高允许温度/℃ 105 120 130 155 180 200 220
绕组温升限值/K 60 75 80 100 125 135 150
性能参考温度/℃ 80 95 100 120 145 155 170

低压绕组类型:
不注明 线绕式
(B) 箔绕式。箔式线圈较好地解决了低电压,大电流线圈线绕产品短路应力大,安匝不平衡,散热效果差,存在绕制螺旋角,人工焊接质量不稳定的突出问题。

高压绕组类型(一般不在型号上注明,需要看说明书):
导线、多层圆筒式或多层分段式结构

组合说明:
SC 三相、环氧树脂浇注包封、低压线绕式线圈
SGB 三相、浸渍绝缘、低压箔绕式线圈


干式变压器的种类及优势
干式变压器分类有很多种方法,如按型号分,有SC(环氧树脂浇注包封式)、SCR(非环氧树脂浇注固体绝缘包封式)、SG(敞开式)。也可按绝缘等级分,有B级、F级、H级和C级,国外有些国家有H和C级之间还有一个N级。当前主要存在着以欧洲为代表的树脂浇注干式变压器(CRDT)及以美国为代表的浸漆式干式变压器)(OVDT)两种类型。我国及一些新兴工业国家(如日、韩等)与欧洲相似,由早期采用浸漆式干变发展到采用树脂真空浇注干变,该项技术在我国得以飞速发展。近来,有几个厂家从国外引进了用NOMEX纸作绝缘的浸漆式干变(OVDT),因各方面的原因,尚未占据国内较大市场。
1)渍绝缘干式变压器
浸渍绝缘干式变压器是干式变压器中应用最早的一种,绕组的结构与油浸式类似,早期就是用玻璃丝包线绕制成的绕组浸普通的绝缘漆。这类变压器绕组制造工装设备简单、成本低,但相对其它形式干式变压器,它承受短路的能力较差。另外,绕组防潮和防尘性能差,变压器停用再投入使用时,可能因为周围的环境因素产生吸潮甚至凝露,使其绝缘水平大大降低,使用前必须进行清理和干燥处理。
20世纪90年代末,国内出现了生产H级绝缘的敞开通风干式变压器(OVDT),其低压一般为箔式绕组,高压为层式结构,绕组卷制后不用模子浇注,不用浇注设备,只用普通绕线机绕制即可。绕组采用真空压力,经过这样处理的绕组具有较强承受短路的能力和耐高温性能。该种变压器通风散热较好,有一定的过载裕度,过载能力强,再加上NOMEX纸在防火、防潮、环保安全方面所具有诸多优点,大大提高了它的技术性能。
2)环氧树脂绝缘干式变压器
环氧树脂浇注的干式变压器机械强度高,耐受短路能力强,防潮及耐腐蚀性能特别好,且局放小、运行寿命长、损耗低、过负荷能力强,企业设计制造经验丰富,产品具备高安全可靠性及良好的环保特性。尤其是运行业绩非常好。树脂浇注式的工艺特点就是必须依靠模具并采用专用浇注设备,在真空状态下使用加入石英粉作为填料,可使树脂机械强度增加,膨胀系数减小,导热性能提高,从而可降低材料成本,且绕组外观较好。有填料树脂浇注又分为厚层有填料树脂浇注和薄层有填料树脂浇注两种。
早期的环氧浇注式干式变压器,都是采用厚绝缘的浇注式线圈,其低压绕组为铝箔绕制的F级圆筒式绕组,绕组端部用树脂浇注。绝缘耐热等级为B级,树脂层的厚度一般6-8mm。当变压器运行后由于发热温度变化差别大极易导致环氧浇注层的开裂,并形成小的空气隙,以致引发局部放电,这将严重威胁变压器的运行可靠性,加之由于局部放电所引起的电腐蚀还将大大缩短变压器的使用寿命。随着技术的进步,厚绝缘就逐步为薄绝缘所代替。
H级绝缘与F级绝缘的环氧树脂浇注干式变压器,在外形、基本结构方面极为相近,不同之处主要是采用H级绝缘环氧树脂、导线匝绝缘要用MOMEX纸包烧、部分线圈绝缘件要用NOMEX纸板制造。其代表厂"顺特电气",早在六、七年前就已生产了多台H级绝缘的干式变压器。近来,为长江三峡水利枢纽生产的
700MW发电机组励磁变压器(单相容量3MVA、2.2MVA)就是H级绝缘、环氧树脂浇注的。由于采用H级绝缘,按F级进行温升考核,变压器不但具有环氧树脂浇注式结构的优点――抗短路能力强、免维护、难燃阻燃等,而且具有更高的超名牌运动能力。
3)OMEX纸绝缘干式变压器
NOMEX绝缘纸是由一种芳香聚酰胺聚合物的纤维组成。这种纤维织成布就是一种耐酸、耐碱、防火的消防服或宇航服。我们从它的分子结构中可以看到,它没有弱的C-H键,即使在外部高温作用下也破坏不了它的分子结构,只能使分子之间的键断裂,因此它的化学性能特别稳定。它不会受到昆虫、真菌和霉菌的侵害。并且与油、浸渍漆、氟碳化合物等有很好的相容性。经过高温高压处理过的NOMEX绝缘纸的延伸率几乎变,它有很高的抗撕裂强度,有很好的耐磨性和韧性。它不但有良好的高温机械性能,而且还有良好的低温机械性能。NOMEX绝缘纸的耐温等级最高,为C级,长期可稳定的在220℃温度下安全工作。在350℃时可以承受短时运行,在250℃时不会软化、熔融和助燃。即使在750℃时不会释放出有毒或腐蚀性的气体,在很低的温度下也不会脆化。因此它在很广的温度范围内保持性能稳定。在美国它被广泛的用在C级绝缘的产品上。在相对温度为95%的状态下,致密的NOMEX绝缘纸仍可保持90%的完全干燥时的介电强度。水份很难渗透经高温高压处理的表面。NOMEX绝缘纸最突出的性能就是它的阻燃性特别好,经试验证明,它在250℃时的限氧指数LOI仍然大于20.8%,因此它不会助燃,能阻燃。
中电电气集团与美国杜邦公司合作开发的SG10干式变压器采用NOMEX纸为主要绝缘材料,被称为绿色变压器。与传统的变压器相比,该产品耐200度高温,传统变压器只能耐140度,噪音小,耗电小,还可回收再利用,不仅不会对环境造成污染。而且从技术角度彻底解决了寿命周期后铜、铁、硅钢等愿材料回收再利用的难题。每年仅铜线圈一项就可为国家回收8亿元不可再生资源。在此基础上,中电电气集团又陆续推出SGR型系列半包封干式电力变压器等以NOMEX
纸为主要绝缘材料的"绿色"变压器 。
4)SF6气体绝缘干式变压器
SF6变压器在日本应用比较广泛,而在我国则很少。它与其他干式变压器相比较最突出的优越性在于应用领域很广泛,这种变压器容量可以做到三相
300MVA,电压可以做到单相500kV(都是由日本制造),同样它也可以制造10kV级配电变压器(早在1988年我国的广州高压电器厂、北京二变、常州变压器厂都开发过,其中北京二变曾经小批量生产)。而且它的结构设计和制造工艺与传统的油浸变压器有很多雷同之处。变压器制造厂不同很多的设备投入就可以去研究开发它了。当然它的缺陷也是很明显的,SF6气体在金属过热时会被分解出一种SF4的极毒物质,加上制造工艺不好,产生泄漏后对大气、对人们带来的后果不堪设想。因此,很多国内专家变为在制造工艺达不到一定水平时不应提倡在中国发展这种变压器。
目前,在欧洲环氧浇注变压器占干式变压器产量的70%左右,空气绝缘变压器占干式变压器的30%左右。在美国、德国、日本等发达国家,干式变压器产量已占配电变压器产量50%以上。在成套变电站中,干式变压器已占80%-90%。我国干式变压器主要有浸渍绝缘干式变压器和环氧树脂绝缘干式变压器两类。我国绝大多数干式变压器的制造厂家引进的是环氧树脂浇注式结构,无论从产量还是技术水平方面,目前都达到世界领先水平。